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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2712

FLOW CHARACTERISTICS OVER A LIFTING WEDGE OF FINITE
ASPECT RATIO WITH ATTACHED AND DETACHED SHOCK
WAVES AT A MACH NUMBER OF 1.40

By John H. Hilton, dJr.
SUMMARY

A series of schlieren photographs and pressure distributions are
presented which show the effects of transition from an attached to a
detached shock at the leading edge of a finite-span, 8.2° wedge as the
angle of attack is increased. These data were obtained in the Langley
4- by b-foot supersonic tunnel at a Mach number of 1.LO.

INTRODUCTION

A knowledge of the mixed subsonic and supersonic flow region that
exists near the leading edge of a wing when the bow shock is detached
is of importance in the design of supersonic aircraft. The theoretical
calculations (refs. 1 to 10) and experimental investigations (refs. 11
to 18) which have been conducted appear to be restricted to the study of
detached shocks on models at zero angle of attack. References 1k, 16,
and 18, in particular, trace the transition from a detached to an attache
shock as the Mach number is increased.

Data pertaining to the transition from an attached to a detached
shock as the angle of attack is increased were obtained in the Langley
4~ by b-foot supersonic tunnel during the course of an investigation
which had other primary objectives. The tests were made at a Mach num-
ber of 1.40 with a wedge airfoil having an 8.2° apex angle. The model,
which did not span the test section, was 16 inches wide and had a chord
of 4.9 inches. A series of schlieren photographs and pressure distri-
butions along the midspan of the forward portion of the model were
obtained through an angle-of-attack range from 0° to 11° in 1° incre-
ments. The resulting pressure data have been integrated to obtain sec-
tion aerodynamic coefficients at midspan and are presented with the
schlieren photographs to supplement existing data on the effects of
shock detachment. Some pressure data were measured in the three-
dimensional flow field of the wing tips and are applicable only to
wedges of the same aspect ratioc as the test model.

i
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SYMBOLS
Cn section normal-force coefficient, n/qcy
Ce section chord-force coefficient (base pressure assumed equal

to free-stream static pressure), C/ch

n section normal force, 1lb

¢ section chord force (base pressure assumed equal to free-
stream static pressure), lb

Cy wedge chord, distance from leading edge to station of maximum
thickness, ft '

q free-stream dynamic pressure, lb/sq ft
p -
P pressure coefficient, —lji—g
P, local static pressure, 1lb/sq ft
P free-stream static pressure, lb/sq ft
a angle of attack of wedge-chord line, deg
M Mach number
Subscripts:
8 surface
t theoretical local value

MODEL AND APPARATUS

The tests were conducted in the Langley 4- by 4-foot supersonic
tunnel which 1s a rectangular, closed-throat, single-return wind tunnel
having a design Mach number range from 1.2 to 2.2. The test-section
Mach number is varied by deflecting the top and bottom walls of the
supersonic nozzle against interchangeable templets which have been
designed to produce uniform flow in the test section. The nozzle walls
were set for a Mach number of 1.40 for these tests. At this Mach number,
the test section has a width of 4.5 feet and a height of 4.4 feet. The
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Mach number variation in the test section is 0.0l and the maximum flow
irregularity about 1/4°.

The model (fig. 1) was constructed of mild steel and was designed
primarily for simplicity of fabrication and installation. The model
had a modified diamond airfoil section. The wedge formed by the portion
of the airfoil forward of the point of maximum thickness had an apex
angle of 8.2°, a chord of 4.9 inches, and a span of 16 inches (aspect
ratio of 3.3). A longitudinal row of six orifices was located at mid-
span on both the upper and lower surfaces. The leading-edge thickness
was approximately 0.002 inch.

The model was sting-mounted and the angle of attack was varied by
means of an external bell-crank mechanism (fig. 2). Figure 3 shows the
model mounted in the tunnel.

TESTS

The tests were conducted at a Mach number of 1.40 and at the
following stagnation conditions:

Pressure, atm . . . . ¢ « ¢ ¢« ¢« o v o o 4 e 0 e e e a0 e s 0.25
Temperature, OF « o « ¢ & v ¢« + ¢ 4 o o + o s o s s s o o o« o . 110
Dew point, OF . & v v v v v v v v v v v e e e e s e e e e -16 to =27

The dynamic pressure was about 229 pounds per square foot and the
Reynolds number based on a wedge chord of 4,9 inches was approximately
437, 000.

Simultaneous pressure measurements and schlieren photographs were
obtained for an angle-of-attack range of 0° to 11° in 1° increments.
An additional schlieren photograph was taken at an angle of attack of
12°, a condition for which the tunnel was choked at the rear of the
model.

RESULTS AND DISCUSSION

A series of schlieren photographs and pressure distributions are
presented to illustrate the general characteristics of the flow over a
wedge having attached and detached shocks. The pressure distributions
. are compared with shock-expansion theory and have been integrated to
provide an interpretation of the data in terms of the section normal-
force coefficient, section chord-force coefficient, and section center
of pressure at midspan.
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The schlieren photographs and pressure distributions (fig. 4) are
presented for an angle-of-attack range from 0° to 11°, The inserts
shown on the schlieren photographs are explained in the schematic
drawing in figure 5. (Mt is calculated by assuming a straight leading-

edge shock)

The flow behind the attached shock is completely supersonic at mid-
span for an angle of attack of 0° (fig. 4(a)). As the angle of attack
is increased, the Mach number increases on the upper surface and
decreases on the lower surface until, at an angle of attack of about
50 (fig. 4(f)), the flow on the lower surface becomes subsonic. The
maximum theoretical flow deflection angle occurs at an angle of attack
of 5.3° (total stream deflection angle of 9.4°). At angles of attack
above 50 the shock wave gradually detaches and moves forward of the
leading edge (figs. 4(g) to 4(1)).

Schlieren Photographs and Pressure Distributions

Attached shock.- The attached shock is slightly curved at the
leading edge for all angles of attack, as can be seen in the schlieren
photographs in figures 4(a) to 4(f) and 6. This curvature is probably
due partly to the development of the boundary-layer displacement thick-
ness in the vicinity of the leading edge (ref. 19) and partly to blunt-
ness of the leading edge. An attached shock exists on both the upper
and lower surfaces at angles of attack of 4° and 59, even though the
upper surface is alined with the free stream at 4° angle of attack
and is at a negative (expansion) angle with respect to the free stream
at 5° angle of attack. These shock waves may be due to flow conditions
at the tips. If so, the shock would not extend across the entire span
but would be located in the vicinity of the wing tips.

The pressure distributions in figures 4(a) to 4(f) indicate that
the regions of two-dimensional flow (regions not affected by tip flow)
are well-described by shock-expansion theory. The slight departure of
the experimental pressures from the straight-line distribution associ-
ated with a flat surface may be caused by model or air-stream irregu-~
larities. The effect of the build-up of the boundary-layer displacement
thickness on the pressures at and behind the first orifice is very
small. 1In the three-dimensional field, an accurate theoretical solution
is not available. The approximate method of reference 20 was used, how-
ever, to estimate the effects of the tips for angles of attack of 3
and 4° (figs. 4(d) and Ui(e)).

Detached shock.- The bow wave detaches, theoretically, at an angle
of attack of approximately 5.3° and moves ahead of the leading edge as
the angle of attack is further increased (figs. 4(g) to 4(1)). The
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transition from attached to detached shock is a progressive phenomenon
as shown in the schlieren photographs. In the flow field behind the
shock a small region of large density gradient exists near the leading
edge of the upper surface and is followed by an attached, oblique shock
(fig. 4(h)). 1In order to present a clearer illustration of this region,
an additional schlieren photograph, taken at an angle of attack of 12°,
is shown as figure 7. The density-gradient field is reversed in this
photograph because of a new position of the knife edge. (The light
region along the lower surface is due to diffraction effects.)

At an angle of attack of 8° (fig. 4(i)) the boundary layer on the
upper surface appears to separate near the last orifice. The sepa-
ration, which moves upstream with increased angle of attack, may be due,
in part, to positive pressure transmitted forward through the boundary
layer. This adverse pressure may be caused by a compression of the flow
on the model support and, at high angles of attack, by a tunnel choking
shock located near the trailing edge of the model.

Pressure coefficients were calculated by means of the two-
dimensional shock-expansion theory for the upper surface for all angles
of attack beyond the angle of attack of shock detachment (figs. 4(g)
to 4(1)). The presence of the bow wave was neglected for these calcu-
lations. The theory is in good agreement with the experimental pres-
sures through part of the range; this agreement, however, may be due
to compensating effects of the complex flow field at the leading edge.
At the higher angles of attack, the experimental pressures near the rear
of the upper surface become more positive, possibly because of the
adverse pressures transmitted through the boundary layer.

Aerodynamic Coefficients

The experimental and theoretical values for the section normal-
force coefficient, section chord-force coefficient, and section center
of pressure at midspan are shown in figure 8 and the corresponding aero-
dynamic coefficients of the individual surfaces of the wedge are pre-
sented in figure 9. The base pressure was assumed to be equal to the
free-stream static pressure. (The surface values have been defined as
the contribution of the individual surfaces to the total coefficients.)
In order to illustrate the transition from an expansion to a compression
surface, the data of figure 9 have been replotted in terms of surface
incidence angles (fig. 10). The sign convention for the aerodynamic
coefficients has been arbitrarily defined as positive if the flow is
compressed and negative if the flow is expanded. The theoretical values
are given for angles of attack up to 5°. These values were cbtained by

- neglecting three-dimensional effects and using the theory for two-

dimensional flow. The agreement between the experimental and theoretical
values of the aerodynamic coefficients is good. As can be seen from
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these curves, the change from attached to detached shock is a gradual
phenomenon resulting in no radical changes in the aerodynamic
coefficients.

CONCLUDING REMARKS

A series of schlieren photographs, midspan pressure distributions,
and aerodynamic coefficients have been presented for an 8.2° wedge of
aspect ratio 3.3. The data, which were taken over an angle-of-attack
range of 0° to 11° at a Mach number of 1.40, illustrate the general
characteristics of supersonic flow over a wedge and show the effects of
transition from an attached to a detached shock wave at the leading
edge. -

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., March 12, 1952
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Orifice numbers
2 4 6
11315
4)1 X i<— ’ ’

Section A-A

.02 clearance

I S — /“ Model

Support sting

16.0

Orifices  x
0.93
.62
2.32
3.02
372
442

8.0

o
i

DD WN —

33
~—49 ‘e-l(—

10.75

f —~ ﬁlnge line , ‘

T,/ & A Horn for angle-of-attack
- ® C
I° wedge half-angle ™~ mechanism
Secfion B-B
0 2 4
Ll o
Scdle, inches

Figure 1.« Model and model-mounting arrangement.
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itions at an angle of

attack of 12°.

Figure 7.- Schlieren photograph of flow cond
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